ESI The Erwin
نویسندگان
چکیده
We introduce a class of singular partial differential equations, the second-order hyperbolic Fuchsian systems, and we investigate the associated initial value problem when data are imposed on the singularity. First of all, we analyze a class of equations in which hyperbolicity is not assumed and we construct asymptotic solutions of arbitrary order. Second, for the proposed class of second-order hyperbolic Fuchsian systems, we establish the existence of solutions with prescribed asymptotic behavior on the singularity. Our proof is based on a new scheme which is also suitable to design numerical approximations. Furthermore, as shown in a follow-up paper, the second-order Fuchsian framework is appropriate to handle Einstein’s field equations for Gowdy symmetric spacetimes and allows us to recover (and slightly generalize) earlier results by Rendall and collaborators, while providing a direct approach leading to accurate numerical solutions. The proposed framework is also robust enough to encompass matter models arising in general relativity.
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010